On Stability of Heegaard Splittings Fengchun Lei

Ana Wright

December 3, 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- Background and definitions
 - 2-Manifolds and 3-Manifolds
 - Compression Body
 - Handlebody
 - Trivial Compression Body

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Heegaard Splitting
- Stabilization
- Stabilization Theorem
 - Proof Idea

2-Manifolds

Def: Topological spaces which are locally homeomorphic to \mathbb{R}^2 .

3-Manifolds

Def: Topological spaces which are locally homeomorphic to \mathbb{R}^3 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Call the "outside" surface $\partial_+ C$ and let $\partial_- C := \partial C \setminus \partial_+ C$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

・日・ ・ 日・ ・ 山・ ・ 山・

ъ

Here we start with $\partial_{-}C$ and build up to $\partial_{+}C$ rather than the other way around.

Here we start with $\partial_{-}C$ and build up to $\partial_{+}C$ rather than the other way around.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Types of compression bodies

Def: A handlebody is a compression body *C* where $\partial_{-}C = \emptyset$.

Def: A trivial compression body is $S \times I$ for some surface S.

▲□▶▲圖▶▲圖▶▲圖▶ ■ のQの

Nice Fact

Remark: All handlebodies retract to a graph known as the **spine** of the handlebody

Def: A **Heegaard splitting** of a 3-manifold *M* is a pair of compression bodies *V* and *W* such that

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

•
$$V \cap W = \partial_+ V = \partial_+ W = F$$

•
$$V \cup W = M$$
.

This is denoted (F, V, W), (M, F), or $V \cup_F W$.

Def: A **Heegaard splitting** of a 3-manifold *M* is a pair of compression bodies *V* and *W* such that

•
$$V \cap W = \partial_+ V = \partial_+ W = F$$

•
$$V \cup W = M$$
.

This is denoted (F, V, W),(M, F), or $V \cup_F V$.

・ロト ・聞ト ・ヨト ・ヨト 三日

We can split S^3 into two 3-balls (handlebodies of genus 0).

・ロト ・ 四ト ・ ヨト ・ ヨト

- 3

We can split S^3 into two 3-balls (handlebodies of genus 0).

We can split T^3 ($S^1 \times S^1 \times S^1$) into two handlebodies of genus 3.

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ● ● ● ●

We can split T^3 ($S^1 \times S^1 \times S^1$) into two handlebodies of genus 3.

< □ > < □ > < □ > = Ξ

We can split T^3 ($S^1 \times S^1 \times S^1$) into two handlebodies of genus 3.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

We can split T^3 ($S^1 \times S^1 \times S^1$) into two handlebodies of genus 3.

We can split T^3 ($S^1 \times S^1 \times S^1$) into two handlebodies of genus 3.

ъ

SAC

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Elementary stabilization of a Heegaard splitting

Def: An **elementary stabilization** of a Heegaard splitting (M, F) is a connect sum between the pairs (M, F) and (S^3, T) where *T* is an unknotted torus.

Elementary stabilization of a Heegaard splitting

Def: An **elementary stabilization** of a Heegaard splitting (M, F) is a connect sum between the pairs (M, F) and (S^3, T) where *T* is an unknotted torus.

Elementary stabilization of a Heegaard splitting

Def: An **elementary stabilization** of a Heegaard splitting (M, F) is a connect sum between the pairs (M, F) and (S^3, T) where *T* is an unknotted torus.

ヨ▶▲ヨ▶ ヨ のへで

Stably equivalent

Def: Two Heegaard splittings (M, F) and (M, F') of the same 3-manifold M are **stably equivalent** if there exists some Heegaard splitting (M, F'') such that:

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

・ コット (雪) (小田) (コット 日)

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

・ コット (雪) (小田) (コット 日)

500

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let (F, V, W) and (F', V', W') be Heegaard splittings of an orientable, closed 3-manifold *M*. Isotopy V' and W to be disjoint. Let $X = \overline{V \setminus V'} = \overline{W' \setminus W}$.

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let (F, V, W) and (F', V', W') be Heegaard splittings of an orientable, closed 3-manifold *M*. Isotopy *V'* and *W* to be disjoint. Let $X = \overline{V \setminus V'} = \overline{W' \setminus W}$. Let (S, Y, Y') be a Heegaard splitting of *X*.

Reference

